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LETTER TO THE EDITOR 

The length of attractors in asymmetric random neural 
networks with deterministic dynamics 
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Abstract. I have developed a method to detect attractors of any length in large 
neural networks with up to 1024 neumns within a reasonable period of CPU time. 
In networks with symmetric couplings only stable states and. in the case of para!- 
le1 dynamics, cycls of length 2 exist. The presented simulations suggest that, in 
sufficiently large sysl-. t.his holds also for couplings up to a distinct value of asym- 
1urny. Dcy""u L i U S  VCL,"S "xb1c'L"'y '""8 LJC" .%Lc "SLSLIS" a," L l l C  &"c.a&.L L Y L E  

length depends exponentially on system size. 

r, 2 .L:. ~.,~.. --. 2 ...... I ̂ _>.I. 

In recent years attractor neural networks [l] have become a n  interesting field for 
many disciplines. Influenced mainly by biology, former network models [2,3] have 
been modified, using other neural representations, e.g. McCulloch-Pitts instead of 
k ing  neurons [4], or introducing asymmetric couplings [5-71. 

The attractors of finite networks of two state-neurons with non-symmetric cou- 
plings are limit cycles as well as fixed points. These cycles can be formed by a suitable 
learning algorithm to store temporal sequences [8]. They can also be utilized to gener- 
a te  signals, oscillating with large tiine constants, corresponding to the respective cycle 
length [9]. 

The influence of coupling syininetry [7] and other system parameters [lo] on n u m  
ber and properties of the f ixed points have been calculated analytically. Concerning 
dynamics, analytical calcnlations exist for totally asymmetric and weak correlated 
couplings [ll]. Numerical simulations, dealing with spread of damage and remanent 
magnetization, suggest a sharp transition between a chaotic phase at low and a frozen 
phase at high coupling symmetries 114. 

In this letter cycles in networks wit,li ra,ndom Gaussian couplings are examined, 
The results of numerical simulations suggest a distinct critical value right in the middle 
between symmetry and asymmetry (see below), separating areas with and without 
extremely long cycles. Additional simulations, recently carried out, give rise to the 
assumption that this also holds for asymmetrically diluted Hebbian couplings and 
show something about the iiature of these cycles. 

The systems mainly considered are fnlly connected Gaussian networks of N Ising 
or McCulloch-Pitts neurons, respectively. Following the  lines of Gutfreund et a/ [7], 
the couplings Jij are obtained from 
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where Ja. = JS. is the symmetric and J$ = -J; the antisymmetric component of the 
coupling matrix. The parameter k defines the coupling symmetry ranging from k = 0 
for symmetric through k = 1 for asymmetric to k -+ M for antisymmetric couplings. 
It is related to the more commonly used parameter 7 by 

‘ I  

ranging from 7 = 1 for symmetric through 7 = 0 for asymmetric to 7 = -1 for 
antisymmetric couplings. 

Here, as usual, the elements of the upper triangular matrices of the components 
Jfj and JP, are random independent Gaussian variables with zero mean and mean 
square equal to 1 / N ( 1  + k’), which ensures that the rows of the coupling matrices 
have average norm 1 ,  independent of system size and symmetry. 

Two deterministic types of updating are considered, namely: 

for Ising neurons (si = *I ) .  For McCullocli-Pitts neurons . 
function has  to be replaced by the st,ep function 

= 0, l )  I 

1 for 2 > 0 { 0 for 2 5 0. 
O ( X )  = 

signum 

( 5 )  

Under these dynamical processes every initial configuration evolves to a definite at- 
tractor, which is in general a periodic repetition of / configurations, i.e. a cycle of 
length / with /I 2 N ,  the number of possible states. Thus, the configuration space is 
partitioned into separate basins of attraction. 

For a given symmetry 71 a large iiuinber of samples has been randomly generated 
according to equation ( I )  with t,he corresponding value for k .  For every sample with 
N 5 16 1 have calculated the nuinher 11 of attractors and the basins of attraction $2, 
(s = 1 , .  . . , n), where $2, is the number of initial configurations, which flow to the sth 
attractor. Additionally, the average attractor size 

and the basin-size-weighted average amactor  size 

are averaged over all samples. 
For N > 16 for every sample one random initial configuration with activity 0.5 is 

generated. After a number of updat,es, every system reaches an attractor. Its length 
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Figure 1. ( 0 )  Basin siee weiphted average attractor size (1’) and I R  and ( a )  un- 
weighted averwe atl ,rztor size ( I )  against the system size N for two difTemn1 coupling 
symmetries rj wit.1, king ~ieiirons and parallel dynamics. 

I and the number of updates 1 are registered. By averaging over all samples we get 
values, denoted as I ,  and 1,. Note that I ,  should take values, comparable to those 

Figure l ( a )  shows the basin-size-weighted average attractor size ( 1 ‘ )  and I ,  in 
small king neuron systems for coupling symmetries r) = 0.6 and 17 = 0.4 calculated 
with parallel dynamics. The (1’) are average values of 2500, the I ,  of 10000 samples. 
As expected, nearly equivalent values for ( 1 ’ )  and I ,  are obtained. 

In contrast t o  the results for ’1 = O.G,  the values of ( 1 ’ )  and I ,  for 7 = 0.4 clearly 
increase with system size. This also holds for the corresponding unweighted average 
attractor sizes ( I )  (figure l ( b ) ) ,  hut,  these values are smaller, which means that longer 
attractors have larger basins of attraction. 

In figure 2 the logarithm of I ,  is plotted against the system size N for networks 
with between 16 and SO king neurons and six different coupling symmetries. For 
7 > 0.5 there is no increase of the average cycle leugth with system size. Rather, for 
very large systems (i.e. N - 1024) the values seem t o  converge slowly to In 2. In fact, 
with r )  > 0.5 and for sufficiently large systems, for parallel dynamics nearly exclusively 
cycles of length 2 are detected. Their basius of attraction dominate the configuration 
space, so that no stable st,ates are found, although they exist, as simulations with 
sequential dynamics show (note that stable states are fixed points under both kinds 
of dynamics). 

For 7 TZ 0.5 no results are plotted, because the values, obtained by averaging over 
one set of 1000 samples, often differred strongly from those from another set of 1000 
samples. 

For r )  < 0.5, however, there is an  exponential dependence I ,  cx exp(aN) with 
values a of 0.05, 0.06 and 0.12 i l l  t,lie case of 7 = 0.45, 0.4 and 0.34, respectively, 
obtained by a least square fit to the siinulation data in figure 2. Note that the I ,  do 
not give t yp ica l  cycle lengths, but are dominated by few very long cycles. If one would 
only plot the longest detected cycle length for given r )  and N against the system size 

of (I’). 
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N 

Figure 2. 
symmelries n. 

Logarithm of In against the system size N for six &Rerent coupling 

N ,  one would roughly get also an exponential increase. For q = 0.34, N = 80 e.g., the 
maximum length of the detected cycles was 493298. 

An analogous behaviour is observed at  7 = -0.5. For q < -0.5 again I ,  does not 
increase with system size, but t,he values seem to converge to ln4. For q < -0.5 and 
sufficiently large systems, for parallel dynamics nearly exclusive cycles of length 4 are 
detected. The mininia of the average number of attractors n and the maxima of ( I ) ,  
(1’)  and I, are a t  ti  = 0 (see figures 11 and 12 of [7]). 

With this method it was not possible to analyse much larger systems. The reason 
is that all systems should be relaxed into an  attractor, and the number of necessary 
updates increases drastically with system size and as q + 0. Nevertheless, for cou- 
plings with high symmetries, systems up to N = 1024 could be simulated. In figure 3 
the logarithm oft,, the average number of updates, which were necassary to relax 
the system into an attractor, is plotted against the logarithm of the system size N .  
The full lines are the results of le&+square fits to the simulation data for N 2 192. 
A power law t ,  a N b  is observed with values b of 0.63, 0.64 and 0.79 for q = 1, 0.98 
and 0.88, respectively. 

In contrast to the case of I , ,  where the behaviour changes drastically a t  r) s 0.5 
the N-dependence of 1, changes snroot.hly with 7. The power-law behaviour at q = 1 
gradually changes into an exponential dependence for 0.5 > q > -0.5 and back to 
a power law at  q = -1. E.g. for = 0.8, the increase of t R  with N is slower than 
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Figure 3. Logarithm OC the average nunber of 
updates t R ,  n e c e s x y  t o  relax a system of E k e  N 
from a random initial configuration tu an attrac- 
tor for high values of symmetry ‘I. 
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Figure 4. Logarithm of 1~ against N (circles) 
and InN (square) for ‘I = 0.8. The increase 
is slower than exponential, but steeper than any 
power law. 

N N 
Figure 5. Logarithm of fR  against the system 
size N for coupling syimetries near ‘I = 0.5. 

exponential, but steeper than any power (see figure 4). 
The exponential dependence t R  0: exp(cN) is shown in figure 5. The full lines 

were obtained by a least square fit to the simulation data for N 2 28. The values for 
e range from 0.03 for 7 = 0.55 to 0.12 for 7 = 0.34. The average number of necessary 

Figure 6. The same p’hrmelers as in figure 2, 
but for McCulloch-Pitts neumns. 
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updates, e.g. for N = 80 and q = 0.34, is 26520. While I, does not give typical 
values, as mentioned above, t ,  does. 

For 
q > 0.5 in large syst,ems nearly exclusively stable stales, for q < -0.5 cycles of length 
2 are detected. Again, for high coupling symmetries, the numher.of necessary updates 
obeys a power law t ,  a N'. At q = 1 oiie finds b = 0.5, i.e. t ,  a fi. 

Likewise for McCulloch-Pitts neurons with coupling symmetries q > 0.5, the  av- 
erage cycle length I, does not increase with system size for sufficiently large systems 
(figure 6). For q < 0.5 the slopes of the full lines, obtained by least-square fits to 
simulation da ta  with N 2 28, are 0.017, 0.026 and 0.044 for q = 0.45, 0.4 and 0.34, 
respectively. The  values are clearly smaller, than for Ising neurons. 

For high coupling symmet,ries the average number of necessary updates t R  obeys 
a power law, t ,  a N',  with 6 = 0.5 for parallel and 6 = 0.38 for sequential dynamics 
at q = 1. For q < 0.5 t R  increases exponentially with system size, t R  a exp(cN) with 
c = 0.025 for q = 0.45 atid c = 0.043 for q = 0.34 for parallel dynamics. 

While for k ing  neurons the longest cycles and the lowest numbers of attractors 
are detected at q = 0, for McCulloch-Pitts neurons the maximaof ( I )  and the minima 
of n are at q Y -4. The  longest cycles, i.e. the maxima of (1 ' )  and I,, are found at 
a slightly different value q Y -0.5. Moreover, the average cycle length I, at q = -1 
still depends exponentially on system size, I ,  a exp(aN) with Q E 0.05 for parallel 
dynamics. 

In conclusion the analysis of the complete configuration space of small systems 
(figure 1) shows no increase of the average cycle length as long as 171 > 0.5 for Ising 
neurons and q > 0.5 for McCulloch-Pitts neurons, respectively. Furthermore, longer 
cycles have larger basins of attraction. 

If this observations also hold for larger systems, then the presented simulation da ta  
suggest tha t  in sufficiently large systems with coupling symmetries q > 0.5 no cycles 
with a length, larger than 1 for s e q u e n h l  and 2 for parallel dynamics, exist. 

The  critical value of 11 is iiidependent of the representation of the neurons. The  
two cases considered (Ising aud McCulloch-Pitts neurons) are extreme. The  behaviour 
changes gradually if the value a, t.aken for the resting neurons is changed gradually 
from -1 to 0, while systems with a < -1 behave like systems with 110. 

In order to examine the nature of the cycles, additionally simulations with asym- 
metrically diluted Hebbian couplings lia,ve been (and will he) carried out.  The  results 
will be published in detail elsewhere, but some points of interest should be mentioned 
here. 

The  symmetry of IIebbian matrices from p = aN random patterns can gradually 
be changed to q - 0 by asymmetrical dilution. If the degree of dilution is sufficiently 
weak, i.e. if the symineky parameter 11 is higher than a critical value qc, the attractor,  
reached by relaxation of a ret,rieval state,  has a high overlap, q 0.97, with this state.  
vC depends on the loading parameber (I and ranges from a value close to 0 for a -+ 0 
to qc -+ 1 for (I -+ oic = 0.14 (a similar problem has been investigated for Gaussian 
couplings in [12], mentioned at the beginning of this letter). But, concerning cycle 
lengths the value q = 0.5 in  t.his case plays the same role as in the rest of this letter 
independent of the loading parameter. Also, in the case of low memory loading with 
random initial states, cycles with lengths >> 2 are detected if q < 0.5. In this case 
however, the cycles observed are rather short compared with the case of Gaussian 
couplings (also see [13]). Moreover, the portion of spin flips per update is only a few 
percent and therefore the overlaps of the cycle states with the retrieval states hardly 

A qualitatively equivalent behaviour is observed for sequential dynamics. 
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fluctuate in time. These overlaps sliow that, the cycles do not, e.g., consist of a series of 
retrieval states, but are rat.her ‘flowing around’ a mature s i d e  of these retrievalstates. 
While such mixture states exist at all values of q2 the formation of cycles around them 
in sufficiently large systems seems to be restricted to couplings with 7 < 0.5. Flip 
rates and cycle lenghts increase with U, and for Gaussian couplings the average flip 
rate reaches 50%. 

The unexpected existence of a critical symmetry value concerning cycle lengths 
seems not to be restricted to the random Gaussian couplings examined in detail in 
this letter. To find the range of its validity and especially the reason for i t  will be one 
subject of futnre studies. 

I would like to thank I< Bauer, G Poppel, U Krey and M Schreckenberg for helpful 
discussions. Special thanks go to U Krauss, to the Rechenzentrum of the university 
of Regensburg, the Leibniz-Reclienzeiitrum Munich and the NLRZ Jlich, where the 
simulations have been carried out on a CRAY Y-MP. This work w a s  supported by the 
Deutsche Forscliuii~gemeinscliaft. 
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